1,487 research outputs found

    FDTD modeling of heatsink RF characteristics for EMC mitigation

    Get PDF
    Due to their size and complex geometry, large heatsinks such as those used in the power electronics industry may enhance the radiated emissions produced by the circuits employing them. Such enhancement of the radio frequency (rf) radiation could cause the equipment to malfunction or to contravene current EMC regulations. In this paper, the electromagnetic resonant effects of heatsinks are examined using the finite-difference time-domain (FDTD) method and recommendations are made concerning the optimum geometry of heatsinks and the placement of components so as to mitigate potential EMC effects

    A physically based fluorescent lamp model for a SPICE or a simulink environment

    Get PDF
    This paper describes a method of modeling fluorescent lamps. The lamp model can be implemented in all major circuit simulation software packages, an example has been given for SPICE and Simulink. The model is based upon a simplified set of physical equations that gives the model validity over a wider range of operating conditions than current fluorescent lamp SPICE models allow for. The model can be used to model any low-pressure mercury-buffer gas fluorescent lamps by entering key lamp parameters, length, radius, cold-spot temperature, and buffer gas fill pressure. If fill pressure is not known, a default value dependent on lamp radius is used. The model shows good agreement over a wide range of operating frequencies and lamp powers

    Analysis and control of dual-output LCLC resonant converters with significant leakage inductance

    Get PDF
    The analysis, design and control of fourth-order LCLC voltage-output series-parallel resonant converters for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are developed to establish operating mode boundaries with which to describe the internal behavior and the impact of output leakage inductance. The resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control to verify the analysis, modeling, and control predictions

    A dynamic conductance model of fluorescent lamp for electronic ballast design simulation

    Get PDF
    A Spice-compatible dynamic conductance model of a fluorescent lamp for use in electronic ballast simulation is presented. The time-dependent conductance of the fluorescent lamp is derived from a plasma ionization balance equation that uses simplified descriptions of the physical processes within the lamp as its basis. The model has been designed to enable user-defined lamp radius, length, buffer gas pressure and cold-spot temperature as input parameters thus representing a valuable tool for ballast simulations. Simulation results are compared to experimental measurements and satisfactory agreement is achieved

    New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques

    Get PDF
    This paper describes a novel adaptive battery model based on a remapped variant of the well-known Randles' lead-acid model. Remapping of the model is shown to allow improved modeling capabilities and accurate estimates of dynamic circuit parameters when used with subspace parameter-estimation techniques. The performance of the proposed methodology is demonstrated by application to batteries for an all-electric personal rapid transit vehicle from the Urban Light TRAnsport (ULTRA) program, which is designated for use at Heathrow Airport, U. K. The advantages of the proposed model over the Randles' circuit are demonstrated by comparisons with alternative observer/estimator techniques, such as the basic Utkin observer and the Kalman estimator. These techniques correctly identify and converge on voltages associated with the battery state-of-charge (SoC), despite erroneous initial conditions, thereby overcoming problems attributed to SoC drift (incurred by Coulomb-counting methods due to overcharging or ambient temperature fluctuations). Observation of these voltages, as well as online monitoring of the degradation of the estimated dynamic model parameters, allows battery aging (state-of-health) to also be assessed and, thereby, cell failure to be predicted. Due to the adaptive nature of the proposed algorithms, the techniques are suitable for applications over a wide range of operating environments, including large ambient temperature variations. Moreover, alternative battery topologies may also be accommodated by the automatic adjustment of the underlying state-space models used in both the parameter-estimation and observer/estimator stages

    Magnetic tomography for lead acid batteries

    Get PDF
    © 2017 The AuthorsThis paper explores the inverse problem approach for finding the current distribution within an electrochemical cell from magnetic field measurements. Current distribution is shown to be a useful measurement for diagnosis of cells and development of cell design. Existing current distribution measurement methods are discussed to provide context and motivation for the work. Magnetic field measurements can be obtained non-invasively and contain information about the current distribution, which is extracted using an appropriate solver. Experimental results are presented which test the effectiveness of a particular inverse problem solver, using both simulated and real magnetic field measurements. The solver presented is based upon one found in literature, but with novel problem-specific modifications. Errors in conductance values in the forward model definition are simulated in order to quantify their effect on solution quality. A modification to the solver is proposed to improve robustness against these model errors. This results in improved solution quality when using real measured data from a resistor-wire model of a cell, and simulated data from a model which more accurately represents the conductance of the cell plate grid and active mass

    Battery SOC management strategy for enhanced frequency response and day-ahead energy scheduling of BESS for energy arbitrage

    Get PDF
    The electricity system has to balance demand and supply every second, a task that is becoming evermore challenging due to the increased penetration of renewable energy sources and subsequent inertial levels. In the UK, a number of grid frequency support services are available, which are developed to provide a real-time response to changes in the grid frequency. The National Grid Electricity Transmission (NGET) - the primary electricity transmission network operator in the UK - has introduced a new faster frequency response service, called the Enhanced Frequency Response (EFR), which requires a response time of under one second. Battery energy storage systems (BESSs) are ideal choice for delivering such a service. In this paper a control algorithm is presented which supplies a charge/discharge power output with respect to deviations in the grid frequency and the ramp-rate limits imposed by NGET, whilst managing the state-of-charge (SOC) of the BESS to maximise the utilisation of the available energy capacity. Using the real UK market clearing prices, a forecasted battery state of charge (SOC) management strategy has been also developed to deliver EFR service whilst scheduling throughout the day for energy arbitrage. Simulation results demonstrate that the proposed algorithm delivers an EFR service within the specification whilst generating arbitrage revenue. A comparative study is also presented to compare the yearly arbitrage revenue obtained from the model of the Willenhall and an experimental Leighton Buzzard battery storage system. Simulation results on a 2MW/1MWh lithium-titanate BESS are provided to verify the proposed algorithm based on the control of an experimentally validated battery model

    On-chip implementation of Extended Kalman Filter for adaptive battery states monitoring

    Get PDF
    This paper reports the development and implementation of an adaptive lithium-ion battery monitoring system. The monitoring algorithm is based on the nonlinear Dual Extended Kalman Filter (DEKF), which allows for simultaneous states and parameters estimation. The hardware platform consists of an ARM cortex-M0 processor with six embedded analogue-to-digital converters (ADCs) for data acquisition. Two definitions for online state-of-health (SOH) characterisation are presented; one energy-based and one power-based. Moreover, a method for online estimation of battery's capacity, which is used in SOH characterisation is proposed. Two definitions for state-of-power (SOP) are adopted. Despite the presence of large sensor noise and incorrect filter initialisation, the DEKF algorithm poses excellent SOC and SOP tracking capabilities during a dynamic discharge test. The SOH prediction results are also in good agreement with actual measurements

    Phase shift control based Maximum Efficiency Point Tracking in resonant wireless power system and its realization

    Get PDF
    A modern Wireless Power Transfer (WPT) system is commonly realized by Strongly Coupled Magnetic Resonances (SCMR), which transfer energy by using the mutual inductance between coils. The application of wireless power transfer is critically limited by its energy transfer efficiency. SCMR systems are designed to transmit at a frequency that is equal to the self-resonant frequency of its power receiver, in applications where the self-resonant frequency varies during operation the measurement of the frequency is typically not possible. In this paper, a phase shift control based Maximum Efficiency Point Tracking (MEPT) approach is proposed along with implementation methodologies to enable real-world application. A prototype wireless power system with MEPT featured is built which verifies that the new MEPT method could effectively track the optimized frequencies continuously on the fly and maximise the efficiency of the WPT

    Performance evaluation of SiC MOSFET in 5-level single phase converter

    Get PDF
    The use of silicon carbide (SiC) semiconductor power devices has been studied and evaluated in a wide variety of converters. The work presented in this paper shows the performance of C2M SiC MOSFETs compared to Si devices operating as switching elements in a 5-level, single phase, multilevel converter. The paper describes the multilevel converter platform used to undertake the evaluation study and experimental results for the operating temperature of the MOSFETs, and conversion efficiency are shown for frequencies ranging from 20 kHz to 80 kHz. Finally, a discussion of the results obtained to highlight the differences in the performance of the Si and SiC devices and the feasibility of using SiC in MLC
    corecore